If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2-18z+16=0
a = 2; b = -18; c = +16;
Δ = b2-4ac
Δ = -182-4·2·16
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-14}{2*2}=\frac{4}{4} =1 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+14}{2*2}=\frac{32}{4} =8 $
| 7h=20 | | 1/2(x-52)=26+7x | | 3(x-1)=2(4x+10 | | 2+6x=x+2 | | 7x-126=x-18 | | 6x-5=65 | | 20=2g | | 15(x+60)=150 | | |6x-5|=65 | | 3+2x=5(-x+7)-53 | | 4(k-6)=6(k-6) | | 27=b+9 | | v/2+-7=-10 | | 3.5d+9.5=+5.25d | | 45y+4=34 | | 3x^2+13x-47=0 | | -8−g=-2g | | 6x+2+2x=6x+8 | | -7x+5(x+8)=34 | | 3y-6=16 | | 5(2x-4)=4(2x+6) | | -15x-4+6x=-4-94 | | 7(3-2x)=-9x+7 | | 4k=-2k+-12 | | 3a-9=1+A | | 2x+2(x+10)=-80 | | 4w+10=w | | 1+x=6x-29 | | (x+1)(x+6)=(x+4)2 | | 0.25x+0.20=0.05x | | 90x+45x+50x=180 | | -80x-7+5x=29 |